KIRIN: Hitting the Internet with Distributed BGP Announcements

Lars Prehn

Max Planck Institute for Informatics

Pawel Foremski

IITiS PAN / DomainTools

Oliver Gasser

IPinfo / Max Planck Institute for Informatics



1 - 5 July, Singapore

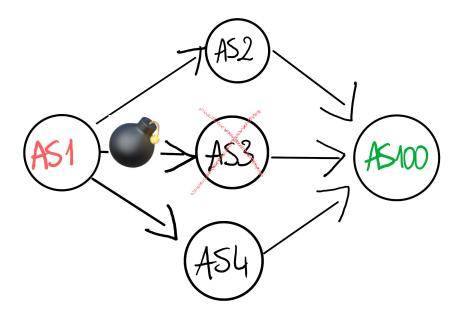
ACM AsiaCCS 2024

BGP Background

• <u>Border Gateway Protocol runs the Internet routing</u>

- BGP ~ selective broadcast via graph
- Internet routers highly interconnected (IXPs)
- Transit, peering, customer links (p2p / p2mp)
- Usually the shortest path selected
- Routes stored in FIB and RIB tables
- FIB: Forwarding Information Base = <u>selected</u>
- RIB: Routing Information Base = <u>available</u>
- Both have limited capacity

What if too many routes announced?

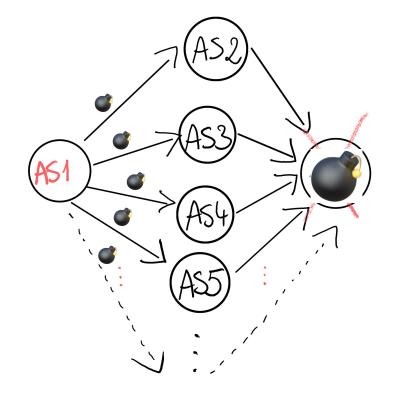


Prefix De-aggregation Attack

• Well-known idea: split large prefixes, overwhelm BGP neighbors

```
192.168.0.0/16 (1)
\downarrow
192.168.0.0/24, 192.168.1.0/24, 192.168.2.0/24, \dots, 192.168.254.0/24, 192.168.255.0/24 (256)
+
192.168.0.0/23 \dots 192.168.254.0/23 (128)
+
192.168.0.0/22 \dots 192.168.252.0/22 (64)
```

- Protection:
 - BGP session max-prefix limits
 - Route aggregation
 - More router memory
 (# of routes: 970k IPv4 + 210k IPv6)


Distributed Prefix De-aggregation Attack

- **KIRIN** revisits the attack in modern context:
 - Remote peering is increasingly popular
 - **IPv6** is widely deployed and available
- Key Ideas:

• Many distributed sessions:

workaround for max-prefix limits and route aggregation (announce unique, disjoint sets of routes)

- Instant and cheap remote BGP sessions: no need for physical presence, automated setup
- IPv6 with RPKI maxLength:
 eg. easy /29 = 1 million RPKI-valid sub-prefixes (global propagation with route filter accept)

Results: Theoretical Feasibility #1

- ILP solver for real-world Internet topology
 - #1 Transit Scenario
 - #2 Peering Scenario

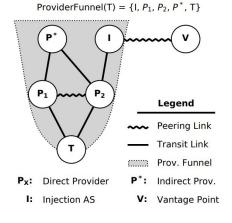
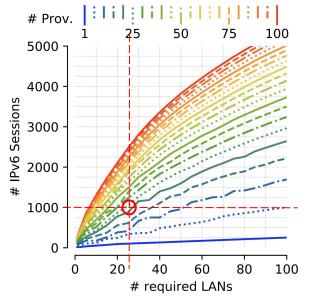
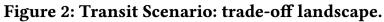




Figure 1: Provider funnel example.

Attack feasible (20 providers @ 25 points \rightarrow 1M prefixes)

Results: Theoretical Feasibility **#2**

- ILP solver for real-world Internet topology
 - #1 Transit Scenario
 - #2 Peering Scenario

Peering <u>alone</u> requires unrealistic resources

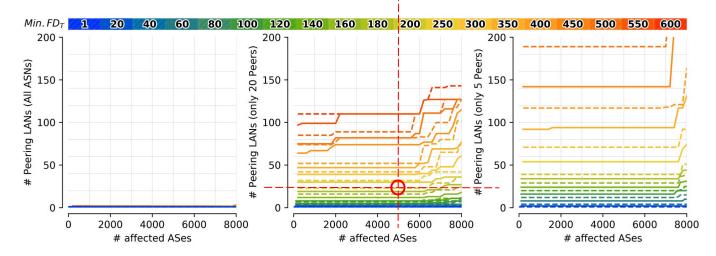


Figure 3: Peering Scenario: trade-off landscape for I_{all} (left), I₂₀ (middle), and I₅ (right).

Results: Practical Experiments

- Built real-world BGP testbed
- Tested Kirin on micro-scale
- Route Aggregation is rare and can be circumvented
- Validated route propagation assumptions
- Tested real BGP routers memory usage

	Routes	Paths	Prefixes
Total	58.2M	13.9M	223K
AS set	12K (0%)	10K (0%)	57 (0%)
ATOM.	4.2M (7%)	1.0M (7%)	161K (72%)
AGGR.	5.1M (8%)	1.3M (9%)	16K (6%)
Any Hint	6.4M (10%)	1.6K (11%)	162K (72%)

Table 1: Results of aggregation analysis.

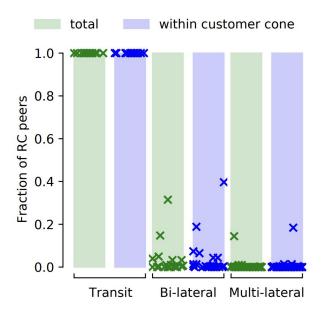


Figure 6: Redistribution behavior of different session types.

Potential Defenses & Operator Response

- Dynamic and Tight Max-Prefix Limits
 - Small but possibly growing <1.5x per day
- Per-Origin and Per-Block Prefix Limits
 - Open-Source implementation: <u>bgpipe.org</u>
 - Presented at RIPE88 conference
- Monitoring, Filtering, Adding Delay
 - Be careful with automated filter lists
 - Monitor for novel prefixes

- Responsible Disclosure
 - Private (IXPs, Tier-1s, Clouds, etc.)
 - Public (mailing lists, blog posts, IETF)

• Operators deployed protections, eg:

- 2 Tier-1 ASes
- 3 Cloud Providers
- Various smaller networks

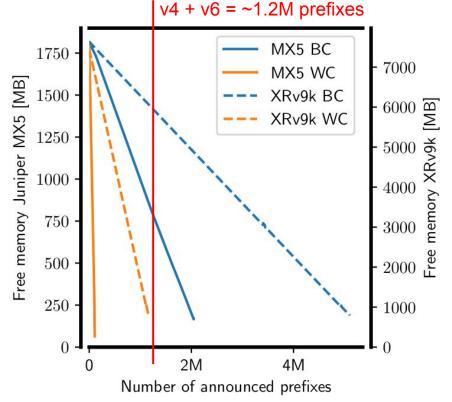
Thank you!

kirin-attack.github.io

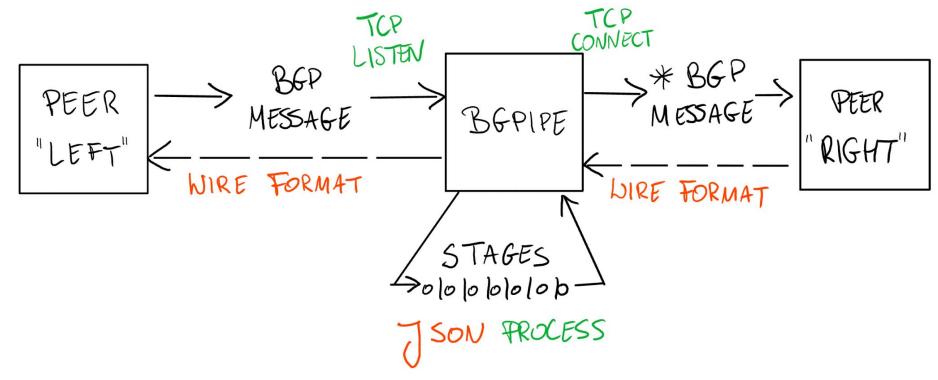
Lars Prehn Iprehn@mpi-inf.mpg.de @mydamnhandle1

Pawel Foremski

Oliver Gasser


ACM AsiaCCS 2024

1 - 5 July, Singapore


Backup Slides

Results: Lab Experiments

- Track memory usage for 2 BGP routers
 - Juniper MX5 —
 - Cisco XRv9k --- --
- Announce non-aggregatable IPv6 routes:
 - BC = Best-Case Scenario: shortest AS_PATH, no BGP communities
 - WC = Worst-Case Scenario: longest AS_PATH, full Large BGP communities
 - $MEM = (PREFIX_SIZE + (255 \times ASN_SIZE) + (255 \times COMM_SIZE)) \times NUM_PFX$

bgpipe.org overview

bgpipe.org: limit

- More advanced max-prefix limits:
 - per-session (classic)
 - per-IP block (eg. 10k per each ::/32)
 - per-AS origin (eg. 15k for any ASN)
- Implemented as a Stage: see <u>limit.go</u>

pjf@pjf:~/bgpfix/bgpipe\$./bgpipe limit -h
Stage usage: limit [OPTIONS]

Description: limit prefix lengths and counts

Options:

-4, --ipv4
-6, --ipv6
 --multicast
 -permanent
-m, --min-length int
-M, --max-length int
-s, --session int
-o, --origin int
-b, --block int
-B, --block-length int

process IPv4 prefixes process IPv6 prefixes process multicast prefixes make announcements permanent (do not con min. prefix length (0 = no limit) max. prefix length (0 = no limit) global session limit (0 = no limit) per-AS origin limit (0 = no limit) per-IP block limit (0 = no limit) IP block length (max. 64, 0 = 8/32 for v

Common Options:

-L, --left -R, --right -A, --args -W, --wait strings -S, --stop strings

Events:

limit/block limit/count limit/long limit/origin limit/short operate in the L direction operate in the R direction consume all CLI arguments till -wait for given event before starting stop after given event is handled

too many prefixes for a single IP block too many prefixes reachable over the ses too long prefix announced too many prefixes for a single AS origin too short prefix announced

